Copied to
clipboard

?

G = C42.156D10order 320 = 26·5

156th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.156D10, C10.1342+ (1+4), C4⋊D2015C2, C42D2034C2, C4⋊C4.113D10, C42.C212D5, D208C438C2, C42⋊D522C2, C20.132(C4○D4), (C2×C10).242C24, (C2×C20).189C23, (C4×C20).201C22, C4.21(Q82D5), D10.13D436C2, C2.59(D48D10), (C2×D20).172C22, C22.263(C23×D5), C56(C22.34C24), (C2×Dic5).272C23, (C4×Dic5).155C22, (C22×D5).107C23, D10⋊C4.113C22, C10.D4.125C22, C10.119(C2×C4○D4), (C5×C42.C2)⋊15C2, C2.26(C2×Q82D5), (C2×C4×D5).141C22, (C5×C4⋊C4).197C22, (C2×C4).594(C22×D5), SmallGroup(320,1370)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.156D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.13D4 — C42.156D10
C5C2×C10 — C42.156D10

Subgroups: 1070 in 240 conjugacy classes, 95 normal (19 characteristic)
C1, C2, C2 [×2], C2 [×5], C4 [×2], C4 [×9], C22, C22 [×15], C5, C2×C4, C2×C4 [×6], C2×C4 [×9], D4 [×12], C23 [×5], D5 [×5], C10, C10 [×2], C42, C42, C22⋊C4 [×10], C4⋊C4 [×6], C4⋊C4 [×2], C22×C4 [×5], C2×D4 [×10], Dic5 [×3], C20 [×2], C20 [×6], D10 [×15], C2×C10, C42⋊C2, C4×D4 [×2], C4⋊D4 [×6], C22.D4 [×4], C42.C2, C41D4, C4×D5 [×6], D20 [×12], C2×Dic5, C2×Dic5 [×2], C2×C20, C2×C20 [×6], C22×D5, C22×D5 [×4], C22.34C24, C4×Dic5, C10.D4 [×2], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×6], C2×C4×D5, C2×C4×D5 [×4], C2×D20 [×10], C42⋊D5, C4⋊D20, D208C4 [×2], D10.13D4 [×4], C42D20 [×6], C5×C42.C2, C42.156D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D5 [×7], C22.34C24, Q82D5 [×2], C23×D5, C2×Q82D5, D48D10 [×2], C42.156D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=ab2, dad-1=a-1b2, cbc-1=a2b, dbd-1=a2b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 94 11 84)(2 137 12 127)(3 96 13 86)(4 139 14 129)(5 98 15 88)(6 121 16 131)(7 100 17 90)(8 123 18 133)(9 82 19 92)(10 125 20 135)(21 105 31 115)(22 68 32 78)(23 107 33 117)(24 70 34 80)(25 109 35 119)(26 72 36 62)(27 111 37 101)(28 74 38 64)(29 113 39 103)(30 76 40 66)(41 77 51 67)(42 116 52 106)(43 79 53 69)(44 118 54 108)(45 61 55 71)(46 120 56 110)(47 63 57 73)(48 102 58 112)(49 65 59 75)(50 104 60 114)(81 153 91 143)(83 155 93 145)(85 157 95 147)(87 159 97 149)(89 141 99 151)(122 152 132 142)(124 154 134 144)(126 156 136 146)(128 158 138 148)(130 160 140 150)
(1 110 156 72)(2 101 157 63)(3 112 158 74)(4 103 159 65)(5 114 160 76)(6 105 141 67)(7 116 142 78)(8 107 143 69)(9 118 144 80)(10 109 145 71)(11 120 146 62)(12 111 147 73)(13 102 148 64)(14 113 149 75)(15 104 150 66)(16 115 151 77)(17 106 152 68)(18 117 153 79)(19 108 154 70)(20 119 155 61)(21 89 51 131)(22 100 52 122)(23 91 53 133)(24 82 54 124)(25 93 55 135)(26 84 56 126)(27 95 57 137)(28 86 58 128)(29 97 59 139)(30 88 60 130)(31 99 41 121)(32 90 42 132)(33 81 43 123)(34 92 44 134)(35 83 45 125)(36 94 46 136)(37 85 47 127)(38 96 48 138)(39 87 49 129)(40 98 50 140)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 93 11 83)(2 82 12 92)(3 91 13 81)(4 100 14 90)(5 89 15 99)(6 98 16 88)(7 87 17 97)(8 96 18 86)(9 85 19 95)(10 94 20 84)(21 114 31 104)(22 103 32 113)(23 112 33 102)(24 101 34 111)(25 110 35 120)(26 119 36 109)(27 108 37 118)(28 117 38 107)(29 106 39 116)(30 115 40 105)(41 66 51 76)(42 75 52 65)(43 64 53 74)(44 73 54 63)(45 62 55 72)(46 71 56 61)(47 80 57 70)(48 69 58 79)(49 78 59 68)(50 67 60 77)(121 160 131 150)(122 149 132 159)(123 158 133 148)(124 147 134 157)(125 156 135 146)(126 145 136 155)(127 154 137 144)(128 143 138 153)(129 152 139 142)(130 141 140 151)

G:=sub<Sym(160)| (1,94,11,84)(2,137,12,127)(3,96,13,86)(4,139,14,129)(5,98,15,88)(6,121,16,131)(7,100,17,90)(8,123,18,133)(9,82,19,92)(10,125,20,135)(21,105,31,115)(22,68,32,78)(23,107,33,117)(24,70,34,80)(25,109,35,119)(26,72,36,62)(27,111,37,101)(28,74,38,64)(29,113,39,103)(30,76,40,66)(41,77,51,67)(42,116,52,106)(43,79,53,69)(44,118,54,108)(45,61,55,71)(46,120,56,110)(47,63,57,73)(48,102,58,112)(49,65,59,75)(50,104,60,114)(81,153,91,143)(83,155,93,145)(85,157,95,147)(87,159,97,149)(89,141,99,151)(122,152,132,142)(124,154,134,144)(126,156,136,146)(128,158,138,148)(130,160,140,150), (1,110,156,72)(2,101,157,63)(3,112,158,74)(4,103,159,65)(5,114,160,76)(6,105,141,67)(7,116,142,78)(8,107,143,69)(9,118,144,80)(10,109,145,71)(11,120,146,62)(12,111,147,73)(13,102,148,64)(14,113,149,75)(15,104,150,66)(16,115,151,77)(17,106,152,68)(18,117,153,79)(19,108,154,70)(20,119,155,61)(21,89,51,131)(22,100,52,122)(23,91,53,133)(24,82,54,124)(25,93,55,135)(26,84,56,126)(27,95,57,137)(28,86,58,128)(29,97,59,139)(30,88,60,130)(31,99,41,121)(32,90,42,132)(33,81,43,123)(34,92,44,134)(35,83,45,125)(36,94,46,136)(37,85,47,127)(38,96,48,138)(39,87,49,129)(40,98,50,140), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,93,11,83)(2,82,12,92)(3,91,13,81)(4,100,14,90)(5,89,15,99)(6,98,16,88)(7,87,17,97)(8,96,18,86)(9,85,19,95)(10,94,20,84)(21,114,31,104)(22,103,32,113)(23,112,33,102)(24,101,34,111)(25,110,35,120)(26,119,36,109)(27,108,37,118)(28,117,38,107)(29,106,39,116)(30,115,40,105)(41,66,51,76)(42,75,52,65)(43,64,53,74)(44,73,54,63)(45,62,55,72)(46,71,56,61)(47,80,57,70)(48,69,58,79)(49,78,59,68)(50,67,60,77)(121,160,131,150)(122,149,132,159)(123,158,133,148)(124,147,134,157)(125,156,135,146)(126,145,136,155)(127,154,137,144)(128,143,138,153)(129,152,139,142)(130,141,140,151)>;

G:=Group( (1,94,11,84)(2,137,12,127)(3,96,13,86)(4,139,14,129)(5,98,15,88)(6,121,16,131)(7,100,17,90)(8,123,18,133)(9,82,19,92)(10,125,20,135)(21,105,31,115)(22,68,32,78)(23,107,33,117)(24,70,34,80)(25,109,35,119)(26,72,36,62)(27,111,37,101)(28,74,38,64)(29,113,39,103)(30,76,40,66)(41,77,51,67)(42,116,52,106)(43,79,53,69)(44,118,54,108)(45,61,55,71)(46,120,56,110)(47,63,57,73)(48,102,58,112)(49,65,59,75)(50,104,60,114)(81,153,91,143)(83,155,93,145)(85,157,95,147)(87,159,97,149)(89,141,99,151)(122,152,132,142)(124,154,134,144)(126,156,136,146)(128,158,138,148)(130,160,140,150), (1,110,156,72)(2,101,157,63)(3,112,158,74)(4,103,159,65)(5,114,160,76)(6,105,141,67)(7,116,142,78)(8,107,143,69)(9,118,144,80)(10,109,145,71)(11,120,146,62)(12,111,147,73)(13,102,148,64)(14,113,149,75)(15,104,150,66)(16,115,151,77)(17,106,152,68)(18,117,153,79)(19,108,154,70)(20,119,155,61)(21,89,51,131)(22,100,52,122)(23,91,53,133)(24,82,54,124)(25,93,55,135)(26,84,56,126)(27,95,57,137)(28,86,58,128)(29,97,59,139)(30,88,60,130)(31,99,41,121)(32,90,42,132)(33,81,43,123)(34,92,44,134)(35,83,45,125)(36,94,46,136)(37,85,47,127)(38,96,48,138)(39,87,49,129)(40,98,50,140), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,93,11,83)(2,82,12,92)(3,91,13,81)(4,100,14,90)(5,89,15,99)(6,98,16,88)(7,87,17,97)(8,96,18,86)(9,85,19,95)(10,94,20,84)(21,114,31,104)(22,103,32,113)(23,112,33,102)(24,101,34,111)(25,110,35,120)(26,119,36,109)(27,108,37,118)(28,117,38,107)(29,106,39,116)(30,115,40,105)(41,66,51,76)(42,75,52,65)(43,64,53,74)(44,73,54,63)(45,62,55,72)(46,71,56,61)(47,80,57,70)(48,69,58,79)(49,78,59,68)(50,67,60,77)(121,160,131,150)(122,149,132,159)(123,158,133,148)(124,147,134,157)(125,156,135,146)(126,145,136,155)(127,154,137,144)(128,143,138,153)(129,152,139,142)(130,141,140,151) );

G=PermutationGroup([(1,94,11,84),(2,137,12,127),(3,96,13,86),(4,139,14,129),(5,98,15,88),(6,121,16,131),(7,100,17,90),(8,123,18,133),(9,82,19,92),(10,125,20,135),(21,105,31,115),(22,68,32,78),(23,107,33,117),(24,70,34,80),(25,109,35,119),(26,72,36,62),(27,111,37,101),(28,74,38,64),(29,113,39,103),(30,76,40,66),(41,77,51,67),(42,116,52,106),(43,79,53,69),(44,118,54,108),(45,61,55,71),(46,120,56,110),(47,63,57,73),(48,102,58,112),(49,65,59,75),(50,104,60,114),(81,153,91,143),(83,155,93,145),(85,157,95,147),(87,159,97,149),(89,141,99,151),(122,152,132,142),(124,154,134,144),(126,156,136,146),(128,158,138,148),(130,160,140,150)], [(1,110,156,72),(2,101,157,63),(3,112,158,74),(4,103,159,65),(5,114,160,76),(6,105,141,67),(7,116,142,78),(8,107,143,69),(9,118,144,80),(10,109,145,71),(11,120,146,62),(12,111,147,73),(13,102,148,64),(14,113,149,75),(15,104,150,66),(16,115,151,77),(17,106,152,68),(18,117,153,79),(19,108,154,70),(20,119,155,61),(21,89,51,131),(22,100,52,122),(23,91,53,133),(24,82,54,124),(25,93,55,135),(26,84,56,126),(27,95,57,137),(28,86,58,128),(29,97,59,139),(30,88,60,130),(31,99,41,121),(32,90,42,132),(33,81,43,123),(34,92,44,134),(35,83,45,125),(36,94,46,136),(37,85,47,127),(38,96,48,138),(39,87,49,129),(40,98,50,140)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,93,11,83),(2,82,12,92),(3,91,13,81),(4,100,14,90),(5,89,15,99),(6,98,16,88),(7,87,17,97),(8,96,18,86),(9,85,19,95),(10,94,20,84),(21,114,31,104),(22,103,32,113),(23,112,33,102),(24,101,34,111),(25,110,35,120),(26,119,36,109),(27,108,37,118),(28,117,38,107),(29,106,39,116),(30,115,40,105),(41,66,51,76),(42,75,52,65),(43,64,53,74),(44,73,54,63),(45,62,55,72),(46,71,56,61),(47,80,57,70),(48,69,58,79),(49,78,59,68),(50,67,60,77),(121,160,131,150),(122,149,132,159),(123,158,133,148),(124,147,134,157),(125,156,135,146),(126,145,136,155),(127,154,137,144),(128,143,138,153),(129,152,139,142),(130,141,140,151)])

Matrix representation G ⊆ GL8(𝔽41)

004000000
000400000
10000000
01000000
000011132121
000019304038
000061228
000039401339
,
00100000
00010000
400000000
040000000
0000111300
0000193000
0000003913
000000282
,
401880000
403333340000
881400000
3334180000
000032100
0000374000
00001341820
000022262121
,
33334010000
78810000
14033330000
3340780000
000022916
000019194034
00001412320
00003939139

G:=sub<GL(8,GF(41))| [0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,11,19,6,39,0,0,0,0,13,30,1,40,0,0,0,0,21,40,2,13,0,0,0,0,21,38,28,39],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,11,19,0,0,0,0,0,0,13,30,0,0,0,0,0,0,0,0,39,28,0,0,0,0,0,0,13,2],[40,40,8,33,0,0,0,0,1,33,8,34,0,0,0,0,8,33,1,1,0,0,0,0,8,34,40,8,0,0,0,0,0,0,0,0,3,37,13,22,0,0,0,0,21,40,4,26,0,0,0,0,0,0,18,21,0,0,0,0,0,0,20,21],[33,7,1,33,0,0,0,0,33,8,40,40,0,0,0,0,40,8,33,7,0,0,0,0,1,1,33,8,0,0,0,0,0,0,0,0,22,19,14,39,0,0,0,0,9,19,12,39,0,0,0,0,1,40,32,13,0,0,0,0,6,34,0,9] >;

50 conjugacy classes

class 1 2A2B2C2D···2H4A4B4C···4H4I4J4K4L4M5A5B10A···10F20A···20L20M···20T
order12222···2444···4444445510···1020···2020···20
size111120···20224···41010101020222···24···48···8

50 irreducible representations

dim11111112222444
type+++++++++++++
imageC1C2C2C2C2C2C2D5C4○D4D10D102+ (1+4)Q82D5D48D10
kernelC42.156D10C42⋊D5C4⋊D20D208C4D10.13D4C42D20C5×C42.C2C42.C2C20C42C4⋊C4C10C4C2
# reps111246124212248

In GAP, Magma, Sage, TeX

C_4^2._{156}D_{10}
% in TeX

G:=Group("C4^2.156D10");
// GroupNames label

G:=SmallGroup(320,1370);
// by ID

G=gap.SmallGroup(320,1370);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,184,675,570,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽